Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 38: 101658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38362049

RESUMO

Islet transplantation is the most effective treatment strategy for type 1 diabetes. Long-term storage at ultralow temperatures can be used to prepare sufficient islets of good quality for transplantation. For freezing islets, dimethyl sulfoxide (DMSO) is a commonly used penetrating cryoprotective agent (CPA). However, the toxicity of DMSO is a major obstacle to cell cryopreservation. Hydroxyethyl starch (HES) has been proposed as an alternative CPA. To investigate the effects of two types of nonpermeating CPA, we compared 4 % HES 130 and HES 200 to 10 % DMSO in terms of mouse islet yield, viability, and glucose-stimulated insulin secretion (GSIS). After one day of culture, islets were cryopreserved in each solution. After three days of cryopreservation, islet recovery was significantly higher in the HES 130 and HES 200 groups than in the DMSO group. Islet viability in the HES 200 group was also significantly higher than that in the DMSO group on Day 1 and Day 3. Stimulation indices determined by GSIS were higher in the HES 130 and 200 groups than in the DMSO group on Day 3. After three days of cryopreservation, HES 130 and HES 200 both reduced the expression of apoptosis- and necrosis-associated proteins and promoted the survival of islets. In conclusion, the use of HES as a CPA improved the survival and insulin secretion of cryopreserved islets compared with the use of a conventional CPA.

2.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230897

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease accompanied by an inflammatory milieu that results in painful joints. The pathogenesis of OA is multifactorial, with genetic predisposition, environmental factors, and traumatic injury resulting in the direct or indirect loss of cartilage. The articular cartilage can also be damaged by direct focal traumatic injury. Articular cartilage provides a smooth, deformable bearing surface with a low coefficient of friction, increased contact area, and reduced contact stress. Articular type II hyaline cartilage lines the synovial joints and, when injured, has a limited ability for repair, except for the most superficial layers via diffusion from the synovial fluid, secondary to no blood supply, a complex structure, and a low metabolic rate. Restoring the articular surface can relieve pain and restore function. Although many strategies have been developed to regenerate type II collagen based on the extent of the lesion, surgical treatments are still evolving. The peroxisome proliferator-activated receptor delta (PPARδ) agonist and collagen treatment of mesenchymal stem cells (MSCs) enhance the chondrogenic capacity in vitro. We present a novel technique for cartilage restoration in a rabbit cartilage osteochondral defect model using a PPARδ agonist (GW0742)-infused 3D collagen scaffold to induce type II cartilage from MSCs.


Assuntos
Cartilagem Articular , Osteoartrite , PPAR delta , Animais , Cartilagem Articular/metabolismo , Condrogênese , Colágeno/metabolismo , Colágeno Tipo II/metabolismo , Osteoartrite/metabolismo , PPAR delta/metabolismo , Coelhos
3.
Int J Mol Sci ; 19(6)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895782

RESUMO

The present study evaluated the protective effects of melatonin in ethanol (EtOH)-induced senescence and osteoclastic differentiation in human periodontal ligament cells (HPDLCs) and cementoblasts and the underlying mechanism. EtOH increased senescence activity, levels of reactive oxygen species (ROS) and the expression of cell cycle regulators (p53, p21 and p16) and senescence-associated secretory phenotype (SASP) genes (interleukin [IL]-1ß, IL-6, IL-8 and tumor necrosis factor-α) in HPDLCs and cementoblasts. Melatonin inhibited EtOH-induced senescence and the production of ROS as well as the increased expression of cell cycle regulators and SASP genes. However, it recovered EtOH-suppressed osteoblastic/cementoblastic differentiation, as evidenced by alkaline phosphatase activity, alizarin staining and mRNA expression levels of Runt-related transcription factor 2 (Runx2) and osteoblastic and cementoblastic markers (glucose transporter 1 and cementum-derived protein-32) in HPDLCs and cementoblasts. Moreover, it inhibited EtOH-induced osteoclastic differentiation in mouse bone marrow⁻derived macrophages (BMMs). Inhibition of protein never in mitosis gene A interacting-1 (PIN1) by juglone or small interfering RNA reversed the effects of melatonin on EtOH-mediated senescence as well as osteoblastic and osteoclastic differentiation. Melatonin blocked EtOH-induced activation of mammalian target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and Nuclear factor of activated T-cells (NFAT) c-1 pathways, which was reversed by inhibition of PIN1. This is the first study to show the protective effects of melatonin on senescence-like phenotypes and osteoclastic differentiation induced by oxidative stress in HPDLCs and cementoblasts through the PIN1 pathway.


Assuntos
Cemento Dentário/citologia , Etanol/farmacologia , Melatonina/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ligamento Periodontal/citologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Cemento Dentário/metabolismo , Humanos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Ligamento Periodontal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...